
NAG C Library Function Document

nag_pde_parab_1d_cd_ode_remesh (d03psc)

1 Purpose

nag_pde_parab_1d_cd_ode_remesh (d03psc) integrates a system of linear or nonlinear convection-diffusion
equations in one space dimension, with optional source terms and scope for coupled ordinary differential
equations (ODEs). The system must be posed in conservative form. This function also includes the option
of automatic adaptive spatial remeshing. Convection terms are discretized using a sophisticated upwind
scheme involving a user-supplied numerical flux function based on the solution of a Riemann problem at
each mesh point. The method of lines is employed to reduce the partial differential equations (PDEs) to a
system of ODEs, and the resulting system is solved using a backward differentiation formula (BDF)
method or a Theta method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_cd_ode_remesh (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double c[], double d[], double s[], Integer *ires,
Nag_Comm *comm),

void (*numflx)(Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[], const double uright[],
double flux[], Integer *ires, Nag_Comm *commNag_D03_Save *saved),

void (*bndary)(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[], const double vdot[],
Integer ibnd, double g[], Integer *ires, Nag_Comm *comm),

void (*uvinit)(Integer npde, Integer npts, Integer nxi, const double x[],
const double xi[], double u[], Integer ncode, double v[],
Nag_Comm *comm),

double u[], Integer npts, double x[], Integer ncode,

void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double r[], Integer *ires,
Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],
const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
const double algopt[], Nag_Boolean remesh, Integer nxfix, const double xfix[],
Integer nrmesh, double dxmesh, double trmesh, Integer ipminf, double xratio,
double con,

void (*monitf)(double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm),

double rsave[], Integer lrsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_cd_ode_remesh (d03psc) integrates the system of convection-diffusion equations in
conservative form:
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Xnpde
j¼1

Pi;j

@Uj

@t
þ @Fi

@x
¼ Ci

@Di

@x
þ Si, ð1Þ

or the hyperbolic convection-only system:

@Ui

@t
þ @Fi

@x
¼ 0, ð2Þ

for i ¼ 1; 2; . . . ; npde, a � x � b, t � t0, where the vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ;Unpde x; tð Þ
h iT

.

The optional coupled ODEs are of the general form

Ri t;V ; _V ; �;U
�;U�

x ;U
�
t

� �
¼ 0, i ¼ 1; 2; . . . ;ncode, ð3Þ

where the vector V is the set of ODE solution values

V tð Þ ¼ V 1 tð Þ; . . . ;V ncode tð Þ
h iT

,

_V denotes its derivative with respect to time, and Ux is the spatial derivative of U .

In (2), Pi;j, Fi and Ci depend on x, t, U and V ; Di depends on x, t, U , Ux and V ; and Si depends on x, t,

U , V and linearly on _V . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives, and Pi;j,

Fi, Ci and Di must not depend on any time derivatives. In terms of conservation laws, Fi,
Ci@Di

@x
and Si

are the convective flux, diffusion and source terms respectively.

In (3), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to PDE spatial mesh points. U�, U�

x and U �
t are the functions U ,

Ux and Ut evaluated at these coupling points. Each Ri may depend only linearly on time derivatives.
Hence (3) may be written more precisely as

R ¼ L�M _V � NU �
t , ð4Þ

where R ¼ R1; . . . ;Rncode

h iT
, L is a vector of length ncode, M is an ncode by ncode matrix, N is an

ncode by n� � npde
� �

matrix and the entries in L, M and N may depend on t, �, U �, U �
x and V . In

practice you only need to supply a vector of information to define the ODEs and not the matrices L, M and
N . (See Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts are

the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts defined initially by you and

(possibly) adapted automatically during the integration according to user-specified criteria.

The initial t ¼ t0ð Þ values of the functions U x; tð Þ and V tð Þ must be specified in a function uvinit supplied
by you. Note that uvinit will be called again following any initial remeshing, and so U x; t0ð Þ should be
specified for all values of x in the interval a � x � b, and not just the initial mesh points.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretization method similar to the central-difference scheme used in nag_pde_parab_1d_fd
(d03pcc), nag_pde_parab_1d_fd_ode (d03phc) and nag_pde_parab_1d_fd_ode_remesh (d03ppc), but with
the flux Fi replaced by a numerical flux, which is a representation of the flux taking into account the
direction of the flow of information at that point (i.e., the direction of the characteristics). Simple central
differencing of the numerical flux then becomes a sophisticated upwind scheme in which the correct
direction of upwinding is automatically achieved.

The numerical flux, F̂i say, must be calculated by you in terms of the left and right values of the solution
vector U (denoted by UL and UR respectively), at each mid-point of the mesh xj�1

2
¼ xj�1 þ xj

� �
=2, for

j ¼ 2; 3; . . . ; npts. The left and right values are calculated by nag_pde_parab_1d_cd_ode_remesh (d03psc)
from two adjacent mesh points using a standard upwind technique combined with a Van Leer slope-limiter
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(see LeVeque (1990)). The physically correct value for F̂i is derived from the solution of the Riemann
problem given by

@Ui

@t
þ @Fi

@y
¼ 0, ð5Þ

where y ¼ x� xj�1
2
, i.e., y ¼ 0 corresponds to x ¼ xj�1

2
, with discontinuous initial values U ¼ UL for y < 0

and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the systems (1) or
(2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description of several
approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe’s scheme
(see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þ AUx ¼ 0. Provided the system is linear in U , i.e., the

Jacobian matrix A does not depend on U , the numerical flux F̂ is given by

F̂ ¼ 1
2 FL þ FRð Þ � 1

2

Xnpde
k¼1

�k �kj jek , ð6Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
Xnpde
k¼1

�kek . ð7Þ

Examples are given in the documents for nag_pde_parab_1d_cd (d03pfc) and nag_pde_parab_1d_cd_ode
(d03plc).

If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in a function pdedef supplied by you. The

numerical flux F̂i must be supplied in a separate user-supplied function numflx. For problems in the form
(2), the actual argument d03plp may be used for pdedef (d03plp is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation for
details). d03plp sets the matrix with entries Pi;j to the identity matrix, and the functions Ci, Di and Si to
zero.

For second-order problems, i.e., diffusion terms present, a boundary condition is required for each PDE at
both boundaries for the problem to be well-posed. If there are no diffusion terms present, then the
continuous PDE problem generally requires exactly one boundary condition for each PDE, that is npde
boundary conditions in total. However, in common with most discretization schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be
derived from the solution inside the domain in some manner (see below). Both types of boundary
conditions must be supplied by you, i.e., a total of npde conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general you should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain (note that when using banded matrix algebra the fixed bandwidth means that
only linear extrapolation is allowed, i.e., using information at just two interior points adjacent to the
boundary). For problems in which the solution is known to be uniform (in space) towards a boundary
during the period of integration then extrapolation is unnecessary; the numerical boundary condition can be
supplied as the known solution at the boundary. Another method of supplying numerical boundary
conditions involves the solution of the characteristic equations associated with the outgoing characteristics.
Examples of both methods can be found in the documents for nag_pde_parab_1d_cd (d03pfc) and
nag_pde_parab_1d_cd_ode (d03plc).
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The boundary conditions must be specified in a user-supplied function bndary in the form

GL
i x; t;U ;V ; _V
� �

¼ 0 at x ¼ a, i ¼ 1; 2; . . . ; npde, ð8Þ

at the left-hand boundary, and

GR
i x; t;U ;V ; _V
� �

¼ 0 at x ¼ b, i ¼ 1; 2; . . . ;npde, ð9Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to the function bndary, but they can
be calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The algebraic-differential equation system which is defined by the functions Ri must be specified in a
function odedef supplied by you. You must also specify the coupling points � (if any) in the array xi.

In total there are npde� nptsþ ncode ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton’s method and
functional iteration (see Berzins et al. (1989) and the references therein).

The adaptive space remeshing can be used to generate meshes that automatically follow the changing time-
dependent nature of the solution, generally resulting in a more efficient and accurate solution using fewer
mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with travelling
wavefronts or variable-width boundary layers for example will benefit from using a moving adaptive mesh.
The discrete time-step method used here (developed by Furzeland (1984)) automatically creates a new
mesh based on the current solution profile at certain time-steps, and the solution is then interpolated onto
the new mesh and the integration continues.

The method requires you to supply a function monitf which specifies in an analytical or numerical form
the particular aspect of the solution behaviour you wish to track. This so-called monitor function is used
by the functions to choose a mesh which equally distributes the integral of the monitor function over the
domain. A typical choice of monitor function is the second space derivative of the solution value at each
point (or some combination of the second space derivatives if there is more than one solution component),
which results in refinement in regions where the solution gradient is changing most rapidly.

You must specify the frequency of mesh updates together with certain other criteria such as adjacent mesh
ratios. Remeshing can be expensive and you are encouraged to experiment with the different options in
order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh
points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria. The
function uvinit will then be called again to determine the initial solution values at the new mesh points
(there is no interpolation at this stage) and the integration proceeds.

The problem is subject to the following restrictions:

(i) In (1), _V j tð Þ, for j ¼ 1; 2; . . . ; ncode, may only appear linearly in the functions Si, for

i ¼ 1; 2; . . . ; npde, with a similar restriction for GL
i and GR

i ;

(ii) Pi;j, Fi, Ci and Si must not depend on any space derivatives; and Pi;j, Ci, Di and Fi must not depend
on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the function pdedef at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the fixed mesh points specified by xfix;

(v) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the PDE
problem.

For further details of the scheme, see Pennington and Berzins (1994) and the references therein.
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5 Arguments

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef – function, supplied by the user External Function

pdedef must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of PDEs.
Pi;j and Ci may depend on x, t, U and V ; Di may depend on x, t, U , Ux and V ; and Si may depend

on x, t, U , V and linearly on _V . pdedef is called approximately midway between each pair of mesh
points in turn by nag_pde_parab_1d_cd_ode_remesh (d03psc). The actual argument d03plp may be
used for pdedef for problems in the form (2) (d03plp is included in the NAG C Library; however,
its name may be implementation-dependent: see the Users’ Note for your implementation for
details).

Its specification is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double c[], double d[], double s[], Integer *ires,
Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.
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3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Ui x; tð Þ, for i ¼ 1; . . . ; npde.

5: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component
@Ui x; tð Þ

@x
, for i ¼ 1; 2; . . . ;npde.

6: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

7: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

8: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

Note: _V i tð Þ, for i ¼ 1; 2; . . . ; ncode, may only appear linearly in Sj, for j ¼ 1; 2; . . . ; npde.

9: p½npde� npde� – double Output

On exit: p½npde� jþ i� must be set to the value of Pi;j x; t;U ;Vð Þ, for
i; j ¼ 1; 2; . . . ; npde.

10: c½npde� – double Output

On exit: c½i� 1� must be set to the value of Ci x; t;U ;Vð Þ, for i ¼ 1; 2; . . . ; npde.

11: d½npde� – double Output

On exit: d½i� 1� must be set to the value of Di x; t;U ;Ux;Vð Þ, for i ¼ 1; 2; . . . ;npde.

12: s½npde� – double Output

On exit: s½i� 1� must be set to the value of Si x; t;U ;V ; _V
� �

, for i ¼ 1; 2; . . . ;npde.

13: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

14: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

d03psc NAG C Library Manual

d03psc.6 [NP3660/8]



user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) these pointers may be allocated
memory by the user and initialized with various quantities for use by pdedef when
called from nag_pde_parab_1d_cd_ode_remesh (d03psc).

5: numflx – function, supplied by the user External Function

numflx must supply the numerical flux for each PDE given the left and right values of the solution
vector u. numflx is called approximately midway between each pair of mesh points in turn by
nag_pde_parab_1d_cd_ode_remesh (d03psc).

Its specification is:

void numflx (Integer npde, double t, double x, Integer ncode, const double v[],
const double uleft[], const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

5: v½ncode� – const double Input

On entry: v½i� 1� contains the value of the component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

6: uleft½npde� – const double Input

On entry: uleft½i� 1� contains the left value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ; npde.

7: uright½npde� – const double Input

On entry: uright½i� 1� contains the right value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ; npde.

8: flux½npde� – double Output

On exit: flux½i� 1� must be set to the numerical flux F̂i, for i ¼ 1; 2; . . . ; npde.

9: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:
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ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

10: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to numflx.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) these pointers may be allocated
memory by the user and initialized with various quantities for use by numflx when
called from nag_pde_parab_1d_cd_ode_remesh (d03psc).

11: saved – Nag_D03_Save * Communication Structure

If numflx calls one of the approximate Riemann solvers nag_pde_parab_1d_euler_roe
(d03puc), nag_pde_parab_1d_euler_osher (d03pvc), nag_pde_parab_1d_euler_hll
(d03pwc) or nag_pde_parab_1d_euler_exact (d03pxc) then saved is used to pass data
concerning the computation to the solver. You should not change the components of
saved.

6: bndary – function, supplied by the user External Function

bndary must evaluate the functions GL
i and GR

i which describe the physical and numerical boundary
conditions, as given by (8) and (9).

Its specification is:

void bndary (Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[], const double vdot[],
Integer ibnd, double g[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.

3: t – double Input

On entry: the current value of the independent variable t.

4: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0� corresponds to the left-hand
boundary, a, and x½npts� 1� corresponds to the right-hand boundary, b.
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5: u½npde� npts� – const double Input

On entry: u½npde� jþ i� contains the value of the component Ui x; tð Þ at x ¼ x½j� 1�, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; npts.

Note: if banded matrix algebra is to be used then the functions GL
i and GR

i may depend on
the value of Ui x; tð Þ at the boundary point and the two adjacent points only.

6: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

7: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

8: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

Note: _V i tð Þ, for i ¼ 1; 2; . . . ; ncode, may only appear linearly in GL
j and GR

j , for
j ¼ 1; 2; . . . ; npde.

9: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated.

ibnd ¼ 0

bndary must evaluate the left-hand boundary condition at x ¼ a.

ibnd 6¼ 0

bndary must evaluate the right-hand boundary condition at x ¼ b.

10: g½npde� – double Output

On exit: g½i� 1� must contain the ith component of either GL
i or GR

i in (8) and (9),
depending on the value of ibnd, for i ¼ 1; 2; . . . ; npde.

11: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

12: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.
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user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) these pointers may be allocated
memory by the user and initialized with various quantities for use by bndary when
called from nag_pde_parab_1d_cd_ode_remesh (d03psc).

7: uvinit – function, supplied by the user External Function

uvinit must supply the initial t ¼ t0ð Þ values of U x; tð Þ and V tð Þ for all values of x in the interval
a � x � b.

Its specification is:

void uvinit (Integer npde, Integer npts, Integer nxi, const double x[],
const double xi[], double u[], Integer ncode, double v[], Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval [a; b].

3: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

4: x½npts� – const double Input

On entry: the current mesh. x½i� 1� contains the value of xi, for i ¼ 1; 2; . . . ;npts.

5: xi½nxi� – const double Input

On entry: xi½i� 1� contains the ODE/PDE coupling point, �i, for i ¼ 1; 2; . . . ; nxi.

6: u½npde� npts� – double Output

On exit: u½npde� jþ i� contains the value of the component Ui xj; t0
� �

, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; npts.

7: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

8: v½ncode� – double Output

On exit: v½i� 1� must contain the value of component V i t0ð Þ, for i ¼ 1; 2; . . . ; ncode.

9: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to uvinit.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) these pointers may be allocated
memory by the user and initialized with various quantities for use by uvinit when
called from nag_pde_parab_1d_cd_ode_remesh (d03psc).
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8: u½neqn� – double Input/Output

On entry: if ind ¼ 1 the value of u must be unchanged from the previous call.

On exit: u½npde� j� 1ð Þ þ i� 1� contains the computed solution Ui xj; t
� �

, for i ¼ 1; 2; . . . ; npde;
j ¼ 1; 2; . . . ; npts, and u½npts� npdeþ k � 1� contains Vk tð Þ, for k ¼ 1; 2; . . . ;ncode, all evaluated
at t ¼ ts.

9: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts � 3.

10: x½npts� – double Input/Output

On entry: the mesh points in the space direction. x½0� must specify the left-hand boundary, a, and
x½npts� 1� must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.
On exit: the final values of the mesh points.

11: ncode – Integer Input

On entry: the number of coupled ODE components.

Constraint: ncode � 0.

12: odedef – function, supplied by the user External Function

odedef must evaluate the functions R, which define the system of ODEs, as given in (4). If you
wish to compute the solution of a system of PDEs only (i.e., ncode ¼ 0), odedef must be the
dummy function d03pek. (d03pek is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double r[], Integer *ires,
Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

4: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

5: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

6: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.
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7: xi½nxi� – const double Input

On entry: xi½i� 1� contains the ODE/PDE coupling point, �i, for i ¼ 1; 2; . . . ; nxi.

8: ucp½npde� nxi� – const double Input

On entry: ucp½npde� jþ i� contains the value of Ui x; tð Þ at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

9: ucpx½npde� nxi� – const double Input

On entry: ucpx½npde� jþ i� contains the value of
@Ui x; tð Þ

@x
at the coupling point x ¼ �j,

for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

10: ucpt½npde� nxi� – const double Input

On entry: ucpt½npde� jþ i� contains the value of
@Ui

@t
at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

11: r½ncode� – double Output

On exit: r½i� 1� must contain the ith component of R, for i ¼ 1; 2; . . . ; ncode, where R is
defined as

R ¼ L�M _V � NU �
t , ð10Þ

or

R ¼ �M _V � NU �
t . ð11Þ

The definition of r is determined by the input value of ires.

12: ires – Integer * Input/Output

On entry: the form of R that must be returned in the array R. If ires ¼ 1, then the
equation (10) above must be used. If ires ¼ �1, then the equation (11) above must be
used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

13: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to odedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) these pointers may be allocated
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memory by the user and initialized with various quantities for use by odedef when
called from nag_pde_parab_1d_cd_ode_remesh (d03psc).

13: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if ncode ¼ 0, nxi ¼ 0;
if ncode > 0, nxi � 0.

14: xi½dim� – const double Input

Note: the dimension, dim, of the array xi must be at least nxi.

On entry: xi½i� 1�, for i ¼ 1; 2; . . . ;nxi, must be set to the ODE/PDE coupling points.

Constraint: x½0� � xi½0� < xi½1� < � � � < xi½nxi� 1� � x½npts� 1�.

15: neqn – Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn ¼ npde� nptsþ ncode.

16: rtol½dim� – const double Input

Note: the dimension, dim, of the array rtol must be at least

1 when itol ¼ 1 or 2;
neqn when itol ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol½i� 1� � 0 for all relevant i.

17: atol½dim� – const double Input

Note: the dimension, dim, of the array atol must be at least

1 when itol ¼ 1 or 3;
neqn when itol ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol½i� 1� � 0 for all relevant i.

18: itol – Integer Input

On entry: a value to indicate the form of the local error test. If ei is the estimated local error for
u½i� 1�, for i ¼ 1; 2; . . . ; neqn, and k k denotes the norm, then the error test to be satisfied is
eik k < 1:0. itol indicates to nag_pde_parab_1d_cd_ode_remesh (d03psc) whether to interpret either
or both of rtol and atol as a vector or scalar in the formation of the weights wi used in the
calculation of the norm (see the description of the argument norm below):

itol rtol atol wi

1 scalar scalar rtol½0� � u½i� 1�j j þ atol½0�
2 scalar vector rtol½0� � u½i� 1�j j þ atol½i� 1�
3 vector scalar rtol½i� 1� � u½i� 1�j j þ atol½0�
4 vector vector rtol½i� 1� � u½i� 1�j j þ atol½i� 1�

Constraint: 1 � itol � 4.

19: norm – Nag_NormType Input

On entry: the type of norm to be used.
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norm ¼ Nag_OneNorm

Averaged L1 norm.

norm ¼ Nag_TwoNorm

Averaged L2 norm.

If U norm denotes the norm of the vector u of length neqn, then for the averaged L1 norm

U norm ¼ 1

neqn

Xneqn
i¼1

u½i� 1�=wi,

and for the averaged L2 norm

Unorm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

neqn

Xneqn
i¼1

u½i� 1�=wið Þ2
vuut ,

See the description of argument itol for the formulation of the weight vector w.

Constraint: norm ¼ Nag_OneNorm or Nag_TwoNorm.

20: laopt – Nag_LinAlgOption Input

On entry: the type of matrix algebra required.

laopt ¼ Nag_LinAlgFull

Full matrix methods to be used.

laopt ¼ Nag_LinAlgBand

Banded matrix methods to be used.

laopt ¼ Nag_LinAlgSparse

Sparse matrix methods to be used.

Constraint: laopt ¼ Nag_LinAlgFull, Nag_LinAlgBand or Nag_LinAlgSparse.

Note: you are recommended to use the banded option when no coupled ODEs are present
(ncode ¼ 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points.

21: algopt½30� – const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt½0� should be set to 0:0. Default values will also be used for any
other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt½0�
Selects the ODE integration method to be used. If algopt½0� ¼ 1:0, a BDF method is used
and if algopt½0� ¼ 2:0, a Theta method is used. The default is algopt½0� ¼ 1:0.

If algopt½0� ¼ 2:0, then algopt½i�, for i ¼ 1; 2; 3 are not used.

algopt½1�
Specifies the maximum order of the BDF integration formula to be used. algopt½1� may be
1:0, 2:0, 3:0, 4:0 or 5:0. The default value is algopt½1� ¼ 5:0.

algopt½2�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt½2� ¼ 1:0 a modified Newton iteration is used and if
algopt½2� ¼ 2:0 a functional iteration method is used. If functional iteration is selected and
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the integrator encounters difficulty, then there is an automatic switch to the modified Newton
iteration. The default value is algopt½2� ¼ 1:0.

algopt½3�
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ; npde for some i or when there is no _V i tð Þ dependence in the
coupled ODE system. If algopt½3� ¼ 1:0, then the Petzold test is used. If algopt½3� ¼ 2:0,
then the Petzold test is not used. The default value is algopt½3� ¼ 1:0.

If algopt½0� ¼ 1:0, then algopt½i�, for i ¼ 4; 5; 6 are not used.

algopt½4�
Specifies the value of Theta to be used in the Theta integration method.
0:51 � algopt½4� � 0:99. The default value is algopt½4� ¼ 0:55.

algopt½5�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt½5� ¼ 1:0, a modified Newton iteration is used and if
algopt½5� ¼ 2:0, a functional iteration method is used. The default value is algopt½5� ¼ 1:0.

algopt½6�
Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt½6� ¼ 1:0,
then switching is allowed and if algopt½6� ¼ 2:0, then switching is not allowed. The default
value is algopt½6� ¼ 1:0.

algopt½10�
Specifies a point in the time direction, tcrit, beyond which integration must not be attempted.
The use of tcrit is described under the argument itask. If algopt½0� 6¼ 0:0, a value of 0:0 for
algopt½10�, say, should be specified even if itask subsequently specifies that tcrit will not be
used.

algopt½11�
Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, algopt½11� should be set to 0:0.

algopt½12�
Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, algopt½12� should be set to 0:0.

algopt½13�
Specifies the initial step size to be attempted by the integrator. If algopt½13� ¼ 0:0, then the
initial step size is calculated internally.

algopt½14�
Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt½14� ¼ 0:0, then no limit is imposed.

algopt½22�
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If algopt½22� ¼ 1:0, a modified Newton iteration is
used and if algopt½22� ¼ 2:0, functional iteration is used. The default value is
algopt½22� ¼ 1:0.

algopt½28� and algopt½29� are used only for the sparse matrix algebra option, i.e.,
laopt ¼ Nag_LinAlgSparse.
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algopt½28�
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0:0 < algopt½28� < 1:0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt½28� lies outside the range
then the default value is used. If the functions regard the Jacobian matrix as numerically
singular, then increasing algopt½28� towards 1:0 may help, but at the cost of increased fill-in.
The default value is algopt½28� ¼ 0:1.

algopt½29�
Used as the relative pivot threshold during subsequent Jacobian decompositions (see
algopt½28�) below which an internal error is invoked. algopt½29� must be greater than zero,
otherwise the default value is used. If algopt½29� is greater than 1:0 no check is made on the
pivot size, and this may be a necessary option if the Jacobian matrix is found to be
numerically singular (see algopt½28�). The default value is algopt½29� ¼ 0:0001.

22: remesh – Nag_Boolean Input

On entry: indicates whether or not spatial remeshing should be performed.

remesh ¼ Nag_True

Indicates that spatial remeshing should be performed as specified.

remesh ¼ Nag_False

Indicates that spatial remeshing should be suppressed.

Note: remesh should not be changed between consecutive calls to
nag_pde_parab_1d_cd_ode_remesh (d03psc). Remeshing can be switched off or on at specified
times by using appropriate values for the arguments nrmesh and trmesh at each call.

23: nxfix – Integer Input

On entry: the number of fixed mesh points.

Constraint: 0 � nxfix � npts� 2.

Note: the end points x½0� and x½npts� 1� are fixed automatically and hence should not be specified
as fixed points.

24: xfix½dim� – const double Input

Note: the dimension, dim, of the array xfix must be at least max 1; nxfixð Þ.
On entry: xfix½i� 1�, for i ¼ 1; 2; . . . ; nxfix, must contain the value of the x co-ordinate at the ith
fixed mesh point.

Constraint: xfix½i� 1� < xfix½i�, for i ¼ 1; 2; . . . ; nxfix� 1, and each fixed mesh point must
coincide with a user-supplied initial mesh point, that is xfix½i� 1� ¼ x½j� 1� for some j,
2 � j � npts� 1.

Note: the positions of the fixed mesh points in the array x½npts� 1� remain fixed during remeshing,
and so the number of mesh points between adjacent fixed points (or between fixed points and end
points) does not change. You should take this into account when choosing the initial mesh
distribution

25: nrmesh – Integer Input

On entry: specifies the spatial remeshing frequency and criteria for the calculation and adoption of a
new mesh.

nrmesh < 0

Indicates that a new mesh is adopted according to the argument dxmesh below. The mesh is
tested every nrmeshj j timesteps.
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nrmesh ¼ 0

Indicates that remeshing should take place just once at the end of the first time step reached
when t > trmesh (see below).

nrmesh > 0

Indicates that remeshing will take place every nrmesh time steps, with no testing using
dxmesh.

Note: nrmesh may be changed between consecutive calls to nag_pde_parab_1d_cd_ode_remesh
(d03psc) to give greater flexibility over the times of remeshing.

26: dxmesh – double Input

On entry: determines whether a new mesh is adopted when nrmesh is set less than zero. A possible
new mesh is calculated at the end of every nrmeshj j time steps, but is adopted only if

xnewi > xoldi þ dxmesh� xoldiþ1 � xoldi

� �
or

xnewi < xoldi � dxmesh� xoldi � xoldi�1

� �
dxmesh thus imposes a lower limit on the difference between one mesh and the next.

Constraint: dxmesh � 0:0.

27: trmesh – double Input

On entry: specifies when remeshing will take place when nrmesh is set to zero. Remeshing will
occur just once at the end of the first time step reached when t is greater than trmesh.

Note: trmesh may be changed between consecutive calls to nag_pde_parab_1d_cd_ode_remesh
(d03psc) to force remeshing at several specified times.

28: ipminf – Integer Input

On entry: the level of trace information regarding the adaptive remeshing.

ipminf ¼ 0

No trace information.

ipminf ¼ 1

Brief summary of mesh characteristics.

ipminf ¼ 2

More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: 0 � ipminf � 2.

29: xratio – double Input

On entry: an input bound on the adjacent mesh ratio (greater than 1:0 and typically in the range 1:5
to 3:0). The remeshing functions will attempt to ensure that

xi � xi�1ð Þ=xratio < xiþ1 � xi < xratio� xi � xi�1ð Þ
Suggested value: xratio ¼ 1:5.

Constraint: xratio > 1:0.

30: con – double Input

On entry: an input bound on the sub-integral of the monitor function Fmon xð Þ over each space step.
The remeshing functions will attempt to ensure that
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Z xiþ1

xi

Fmon xð Þdx � con

Z x
npts

x1

Fmon xð Þdx,

(see Furzeland (1984)). con gives you more control over the mesh distribution, e.g., decreasing con
allows more clustering. A typical value is 2:0= npts� 1ð Þ, but you are encouraged to experiment
with different values. Its value is not critical and the mesh should be qualitatively correct for all
values in the range given below.

Suggested value: con ¼ 2:0= npts� 1ð Þ.
Constraint: 0:1= npts� 1ð Þ � con � 10.0= npts� 1ð Þ.

31: monitf – function, supplied by the user External Function

monitf must supply and evaluate a remesh monitor function to indicate the solution behaviour of
interest.

If you specify remesh ¼ Nag_False, i.e., no remeshing, then monitf will not be called and the
dummy function d03pel may be used for monitf. (d03pel is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation
for details.)

Its specification is:

void monitf (double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm)

1: t – double Input

On entry: the current value of the independent variable t.

2: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.

3: npde – Integer Input

On entry: the number of PDEs in the system.

4: x½npts� – const double Input

On entry: the current mesh. x½i� 1� contains the value of xi, for i ¼ 1; 2; . . . ;npts.

5: u½npde� npts� – const double Input

On entry: u½npde� jþ i� contains the value of Ui x; tð Þ at x ¼ x½j� 1� and time t, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; npts.

6: fmon½npts� – double Output

On exit: fmon½i� 1� must contain the value of the monitor function Fmon xð Þ at mesh point
x ¼ x½i� 1�.

7: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to monitf.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) these pointers may be allocated
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memory by the user and initialized with various quantities for use by monitf when
called from nag_pde_parab_1d_cd_ode_remesh (d03psc).

32: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.

If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

33: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_cd_ode_remesh (d03psc) is called. Its size depends on the type of matrix
algebra selected:

if laopt ¼ Nag_LinAlgFull, lrsave � neqn� neqnþ neqnþ nwkresþ lenode;
if laopt ¼ Nag_LinAlgBand, lrsave � 3�mluþ 1ð Þ � neqnþ nwkresþ lenode;
if laopt ¼ Nag_LinAlgSparse, lrsave � 4� neqnþ 11� neqn=2þ 1þ nwkresþ lenode;

where

mlu ¼ the lower or upper half bandwidths, and
mlu ¼ 3� npde� 1, for PDE problems only, and
mlu ¼ neqn� 1, for coupled PDE/ODE problems.

nwkres ¼ npde� 2� nptsþ 6� nxiþ 3� npdeþ 26ð Þ þ nxiþ ncodeþ 7� nptsþ
nxfixþ 1, when ncode > 0 and nxi > 0, and
nwkres ¼ npde� 2� nptsþ 3� npdeþ 32ð Þ þ ncodeþ 7� nptsþ nxfixþ 2, when
ncode > 0 and nxi ¼ 0, and
nwkres ¼ npde� 2� nptsþ 3� npdeþ 32ð Þ þ 7� nptsþ nxfixþ 3, when ncode ¼ 0.

lenode ¼ 6þ int algopt½1�ð Þð Þ � neqnþ 50, when the BDF method is used, and
lenode ¼ 9� neqnþ 50, when the Theta method is used.

Note: when laopt ¼ Nag_LinAlgSparse, the value of lrsave may be too small when supplied to the
integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if
itrace > 0 and the function returns with fail.code ¼ NE_INT_2.

34: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular the following components of the array isave
concern the efficiency of the integration:

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

isave½3�
Contains the order of the BDF method last used in the time integration, if applicable. When
the Theta method is used isave½3� contains no useful information.
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isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

35: lisave – Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde_parab_1d_cd_ode_remesh (d03psc) is called. Its size depends on the type of matrix
algebra selected:

if laopt ¼ Nag_LinAlgFull, lisave � 25;
if laopt ¼ Nag_LinAlgBand, lisave � neqnþ nxfixþ 25;
if laopt ¼ Nag_LinAlgSparse, lisave � 25� neqnþ nxfixþ 25.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function returns
with fail.code ¼ NE_INT_2.

36: itask – Integer Input

On entry: the task to be performed by the ODE integrator.

itask ¼ 1

Normal computation of output values u at t ¼ tout (by overshooting and interpolating).

itask ¼ 2

Take one step in the time direction and return.

itask ¼ 3

Stop at first internal integration point at or beyond t ¼ tout.

itask ¼ 4

Normal computation of output values u at t ¼ tout but without overshooting t ¼ tcrit where
tcrit is described under the argument algopt.

itask ¼ 5

Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument algopt.

Constraint: 1 � itask � 5.

37: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_cd_ode_remesh (d03psc)
and the underlying ODE solver. itrace may take the value �1, 0, 1, 2, or 3.

itrace ¼ �1

No output is generated.

itrace ¼ 0

Only warning messages from the PDE solver are printed .

itrace > 0

Output from the underlying ODE solver is printed . This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < �1, then �1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.
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38: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

39: ind – Integer * Input/Output

On entry: must be set to 0 or 1.

ind ¼ 0

Starts or restarts the integration in time.

ind ¼ 1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout, fail, nrmesh and trmesh may be reset between calls to
nag_pde_parab_1d_cd_ode_remesh (d03psc).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

40: comm – Nag_Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

41: saved – Nag_D03_Save * Communication Structure

Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

42: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_BAD_MONIT

fmon is negative at one or more mesh points, or zero mesh spacing has been obtained due to a poor
monitor function.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef, numflx, bndary, or odedef.

NE_FAILED_START

atol and rtol were too small to start integration.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ valueh i.
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Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts ¼ valueh i.

NE_INCOMPAT_PARAM

On entry, con < 0:1= npts� 1ð Þ: con ¼ valueh i, npts ¼ valueh i.
On entry, con > 10:0= npts� 1ð Þ: con ¼ valueh i, npts ¼ valueh i.
On entry, the point xfix½i� 1� does not coincide with any x½j� 1�: i ¼ valueh i,
xfix½i� 1� ¼ valueh i.

NE_INT

On entry, ind is not equal to 0 or 1: ind ¼ valueh i.
On entry, ipminf is not equal to 0, 1, or 2: ipminf ¼ valueh i.
ires set to an invalid value in call to pdedef, numflx, bndary, or odedef.

On entry, itask is not equal to 1, 2, 3, 4 or 5: itask ¼ valueh i.
On entry, itol is not equal to 1, 2, 3, or 4: itol ¼ valueh i.
On entry, ncode ¼ valueh i.
Constraint: ncode � 0.

On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npts ¼ valueh i.
Constraint: npts � 3.

On entry, nxfix ¼ valueh i.
Constraint: nxfix � 0.

On entry, nxi ¼ valueh i.
Constraint: nxi � 0.

NE_INT_2

On entry, corresponding elements atol½i� 1� and rtol½j� 1� are both zero. i ¼ valueh i, j ¼ valueh i.
On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, nxfix > npts� 2: nxfix ¼ valueh i, npts ¼ valueh i.
When using the sparse option lisave or lrsave is too small: lisave ¼ valueh i, lrsave ¼ valueh i.

NE_INT_4

On entry, neqn is not equal to npde� nptsþ ncode: neqn ¼ valueh i, npde ¼ valueh i,
npts ¼ valueh i, ncode ¼ valueh i.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt½14� has been exceeded.
algopt½14� ¼ valueh i.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.
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NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: i ¼ valueh i, x½i� 1� ¼ valueh i, j ¼ valueh i,
x½j� 1� ¼ valueh i.
On entry, xfix½i� � xfix½i� 1�: i ¼ valueh i, xfix½i� ¼ valueh i, xfix½i� 1� ¼ valueh i.
On entry, xi½i� � xi½i� 1�: i ¼ valueh i, xi½i� ¼ valueh i, xi½i� 1� ¼ valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL

On entry, dxmesh ¼ valueh i.
Constraint: dxmesh � 0:0.

On entry, xratio ¼ valueh i.
Constraint: xratio > 1:0.

NE_REAL_2

On entry, at least one point in xi lies outside x½0�; x½npts� 1�½ �: x½0� ¼ valueh i,
x½npts� 1� ¼ valueh i.
On entry, tout� ts is too small: tout ¼ valueh i, ts ¼ valueh i.
On entry, tout � ts: tout ¼ valueh i, ts ¼ valueh i.

NE_REAL_ARRAY

On entry, atol½i� 1� < 0:0: i ¼ valueh i, atol½i� 1� ¼ valueh i.
On entry, rtol½i� 1� < 0:0: i ¼ valueh i, rtol½i� 1� ¼ valueh i.

NE_REMESH_CHANGED

remesh has been changed between calls to nag_pde_parab_1d_fd_ode_remesh (d03ppc).

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

The functions P, D, or C appear to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef, numflx, bndary, or odedef.
Integration is successful as far as ts: ts ¼ valueh i.

NE_ZERO_WTS

Zero error weights encountered during time integration.

7 Accuracy

nag_pde_parab_1d_cd_ode_remesh (d03psc) controls the accuracy of the integration in the time direction
but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of
mesh points and on their distribution in space. In the time integration only the local error over a single
step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore
test the effect of varying the accuracy arguments, atol and rtol.
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8 Further Comments

nag_pde_parab_1d_cd_ode_remesh (d03psc) is designed to solve systems of PDEs in conservative form,
with optional source terms which are independent of space derivatives, and optional second-order diffusion
terms. The use of the function to solve systems which are not naturally in this form is discouraged, and
you are advised to use one of the central-difference scheme functions for such problems.

You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small error
tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum time
step should be imposed using algopt½12�. It is worth experimenting with this argument, particularly if the
integration appears to progress unrealistically fast (with large time steps). Setting the maximum time step
to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable
and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-physical
speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to
employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical
propagation speeds by comparing results for different mesh sizes. Further details and an example can be
found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system, the accuracy requested, and the frequency of the
mesh updates. For a given system with fixed accuracy and mesh-update frequency it is approximately
proportional to neqn.

9 Example

For this function two examples are presented, with a main program and two example problems given in the
functions ex1 and ex2.

Example 1 (ex1)

This example is a simple model of the advection and diffusion of a cloud of material:

@U

@t
þW

@U

@x
¼ C

@2U

@x2
,

for x 2 0; 1½ � and t � 0 � 0:3. In this example the constant wind speed W ¼ 1 and the diffusion
coefficient C ¼ 0:002.

The cloud does not reach the boundaries during the time of integration, and so the two (physical) boundary
conditions are simply U 0; tð Þ ¼ U 1; tð Þ ¼ 0:0, and the initial condition is

U x; 0ð Þ ¼ sin �
x� a

b� a

� �
, a � x � b,

and U x; 0ð Þ ¼ 0 elsewhere, where a ¼ 0:2 and b ¼ 0:4.

The numerical flux is simply F̂ ¼ WUL.

The monitor function for remeshing is taken to be the absolute value of the second derivative of U .

Example 2 (ex2)

This example is a linear advection equation with a non-linear source term and discontinuous initial profile:

@u

@t
þ @u

@x
¼ �pu u� 1ð Þ u� 1

2

� �
,

for 0 � x � 1 and t � 0. The discontinuity is modelled by a ramp function of width 0:01 and gradient
100, so that the exact solution at any time t � 0 is

u x; tð Þ ¼ 1:0þmax min �; 0ð Þ;�1ð Þ,
where � ¼ 100 0:1� xþ tð Þ. The initial profile is given by the exact solution. The characteristic points
into the domain at x ¼ 0 and out of the domain at x ¼ 1, and so a physical boundary condition u 0; tð Þ ¼ 1
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is imposed at x ¼ 0, with a numerical boundary condition at x ¼ 1 which can be specified as u 1; tð Þ ¼ 0
since the discontinuity does not reach x ¼ 1 during the time of integration.

The numerical flux is simply F̂ ¼ UL at all times.

The remeshing monitor function (described below) is chosen to create an increasingly fine mesh towards
the discontinuity in order to ensure good resolution of the discontinuity, but without loss of efficiency in
the surrounding regions. However, refinement must be limited so that the time step required for stability
does not become unrealistically small. The region of refinement must also keep up with the discontinuity
as it moves across the domain, and hence it cannot be so small that the discontinuity moves out of the
refined region between remeshing.

The above requirements mean that the use of the first or second spatial derivative of U for the monitor
function is inappropriate; the large relative size of either derivative in the region of the discontinuity leads
to extremely small mesh-spacing in a very limited region, and the solution is then far more expensive than
for a very fine fixed mesh.

An alternative monitor function based on a cosine function proves very successful. It is only semi-
automatic as it requires some knowledge of the solution (for problems without an exact solution an initial
approximate solution can be obtained using a coarse fixed mesh). On each call to the user-supplied monitf
function the discontinuity is located by finding the maximum spatial derivative of the solution. On the first
call the desired width of the region of non-zero monitor function is set (this can be changed at a later time
if desired). Then on each call the monitor function is assigned using a cosine function so that it has a
value of one at the discontinuity down to zero at the edges of the predetermined region of refinement, and
zero outside the region. Thus the monitor function and the subsequent refinement are limited, and the
region is large enough to ensure that there is always sufficient refinement at the discontinuity.

9.1 Program Text

/* nag_pde_parab_1d_cd_ode_remesh (d03psc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

int ex1(void), ex2(void);
static void uvin1(Integer, Integer, Integer, const double[],

const double[], double[],Integer, double[],
Nag_Comm *);

static void uvin2(Integer, Integer, Integer, const double[],
const double[], double[],Integer, double[],
Nag_Comm *);

static void pdef1(Integer, double, double, const double[],
const double[], Integer, const double[],
const double[], double[], double[], double[],
double[], Integer *, Nag_Comm *);

static void pdef2(Integer, double, double, const double[],
const double[], Integer, const double[],
const double[], double[], double[], double[],
double[], Integer *, Nag_Comm *);

static void bndry1(Integer, Integer, double, const double[],
const double[], Integer, const double[],
const double[], Integer, double[],
Integer *, Nag_Comm *);

static void bndry2(Integer, Integer, double, const double[],
const double[], Integer, const double[],
const double[], Integer, double[],
Integer *, Nag_Comm *);

static void monit1(double, Integer, Integer, const double[],
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const double[], double[], Nag_Comm *);
static void monit2(double, Integer, Integer, const double[],

const double[], double[], Nag_Comm *);
static void nmflx1(Integer, double, double, Integer,

const double[], const double[],
const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

static void nmflx2(Integer, double, double, Integer,
const double[], const double[],
const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

static void exact(double, double *, const double *, Integer,
Integer);

#define P(I,J) p[npde*((J)-1)+(I)-1]
#define UE(I,J) ue[npde*((J)-1)+(I)-1]
#define U(I,J) u[npde*((J)-1)+(I)-1]
#define UOUT(I,J,K) uout[npde*(intpts*((K)-1)+(J)-1)+(I)-1]

int main(void)
{

Vprintf("nag_pde_parab_1d_cd_ode_remesh (d03psc) Example Program Results\n");
ex1();
ex2();
return 0;

}

int ex1(void)
{

const Integer npde=1, npts=61, ncode=0, nxi=0, nxfix=0, itype=1,
neqn=npde*npts+ncode, intpts=7, lisave=25+nxfix+neqn,
nwkres=npde*(3*npts+3*npde+32)+7*npts+3, lenode=11*neqn+50,
mlu=3*npde-1, lrsave=(3*mlu+1)*neqn+nwkres+lenode;

static double xout[7] = { .2,.3,.4,.5,.6,.7,.8 };
double con, dxmesh, tout, trmesh, ts, xratio;
Integer exit_status, i, ind, ipminf, it, itask, itol,

itrace, m, nrmesh;
Nag_Boolean remesh;
double *algopt=0, *atol=0, *rsave=0, *rtol=0,

*u=0, *uout=0, *x=0, *xfix=0, *xi=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

INIT_FAIL(fail);
exit_status = 0;

/* Allocate memory */

if ( !(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xfix = NAG_ALLOC(1, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)) )

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

Vprintf("\n\nExample 1\n\n");

itrace = 0;
itol = 1;
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atol[0] = 1.0e-4;
rtol[0] = 1.0e-4;

Vprintf(" npts = %4ld", npts);
Vprintf(" atol = %10.3e", atol[0]);
Vprintf(" rtol = %10.3e\n\n", rtol[0]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
xfix[0] = 0.0;

/* Set remesh parameters */

remesh = 1;
nrmesh = 3;
dxmesh = 0.0;
trmesh = 0.0;
con = 2.0/(npts-1.0);
xratio = 1.5;
ipminf = 0;

xi[0] = 0.0;
ind = 0;
itask = 1;

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* b.d.f. integration */

algopt[0] = 1.0;
algopt[12] = 0.005;

/* Loop over output value of t */

ts = 0.0;
tout = 0.0;
for (it = 0; it < 3; ++it)

{
tout = 0.1*(it+1);

/* nag_pde_parab_1d_cd_ode_remesh (d03psc).
* General system of convection-diffusion PDEs with source
* terms in conservative form, coupled DAEs, method of
* lines, upwind scheme using numerical flux function based
* on Riemann solver, remeshing, one space variable
*/

nag_pde_parab_1d_cd_ode_remesh(npde, &ts, tout, pdef1, nmflx1, bndry1,
uvin1, u, npts, x, ncode, d03pek, nxi, xi,
neqn, rtol, atol, itol, Nag_OneNorm,
Nag_LinAlgBand, algopt, remesh, nxfix,
xfix, nrmesh, dxmesh, trmesh, ipminf,
xratio, con, monit1, rsave, lrsave, isave,
lisave, itask, itrace, 0, &ind, &comm,
&saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_cd_ode_remesh (d03psc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf(" t = %6.3f\n", ts);
Vprintf(" x ");

for (i = 1; i <= intpts; ++i)
{

Vprintf("%9.4f", xout[i-1]);
Vprintf(i%7 == 0 || i == 7 ?"\n":"");
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}

/* Interpolate at output points */

m = 0;
/* nag_pde_interp_1d_fd (d03pzc).
* PDEs, spatial interpolation with nag_pde_parab_1d_fd
* (d03pcc), nag_pde_parab_1d_keller (d03pec),
* nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_fd_ode
* (d03phc), nag_pde_parab_1d_keller_ode (d03pkc),
* nag_pde_parab_1d_cd_ode (d03plc),
* nag_pde_parab_1d_fd_ode_remesh (d03ppc),
* nag_pde_parab_1d_keller_ode_remesh (d03prc) or
* nag_pde_parab_1d_cd_ode_remesh (d03psc)
*/

nag_pde_interp_1d_fd(npde, m, u, npts, x, xout, intpts, itype, uout,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_interp_1d_fd (d03pzc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf(" Approx u ");

for (i = 1; i <= intpts; ++i)
{

Vprintf("%9.4f", UOUT(1,i,1));
Vprintf(i%7 == 0 || i == 7 ?"\n":"");

}
Vprintf("\n");

}

Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:

if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (uout) NAG_FREE(uout);
if (x) NAG_FREE(x);
if (xfix) NAG_FREE(xfix);
if (xi) NAG_FREE(xi);
if (isave) NAG_FREE(isave);

return exit_status;

}
static void uvin1(Integer npde, Integer npts, Integer nxi, const double x[],

const double xi[], double u[],Integer ncode,
double v[], Nag_Comm *comm)

{
Integer i;

for (i = 1; i <= npts; ++i)
{

if (x[i-1] > 0.2 && x[i-1] <= 0.4)
{

U(1, i) = sin(nag_pi*(5.0*x[i-1]-1.0));
} else {

U(1, i) = 0.0;
}

}
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return;
}
static void pdef1(Integer npde, double t, double x, const double u[],

const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double c[],
double d[], double s[], Integer *ires,
Nag_Comm *comm)

{
P(1, 1) = 1.0;
c[0] = 0.002;
d[0] = ux[0];
s[0] = 0.0;

return;
}
static void bndry1(Integer npde, Integer npts, double t, const double x[],

const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[],
Integer *ires, Nag_Comm *comm)

{
/* Zero solution at both boundaries */

if (ibnd == 0)
{

g[0] = U(1, 1);
} else {

g[0] = U(1, npts);
}

return;
}
static void monit1(double t, Integer npts, Integer npde, const double x[],

const double u[], double fmon[], Nag_Comm *comm)
{

double h1, h2, h3;
Integer i;

for (i = 2; i <= npts-1; ++i)
{

h1 = x[i - 1] - x[i - 2];
h2 = x[i] - x[i - 1];
h3 = 0.5*(x[i] - x[i - 2]);

/* Second derivatives */

fmon[i-1] = fabs(((U(1,i+1) - U(1,i))/h2 - (U(1,i) - U(1,i-1))/h1)/h3);
}

fmon[0] = fmon[1];
fmon[npts-1] = fmon[npts-2];

return;
}
static void nmflx1(Integer npde, double t, double x, Integer ncode,

const double v[], const double uleft[],
const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
flux[0] = uleft[0];

return;
}

int ex2(void)
{

const Integer npde=1, npts=61, ncode=0, nxi=0, nxfix=0, itype=1,
neqn=npde*npts+ncode, intpts=7, lisave=25+nxfix+neqn,
nwkres=npde*(3*npts+3*npde+32)+7*npts+3, lenode=11*neqn+50,
mlu=3*npde-1, lrsave=(3*mlu+1)*neqn+nwkres+lenode;

static double xout[7] = { 0.,.3,.4,.5,.6,.7,1. };
double con, dxmesh, tout, trmesh, ts, xratio;
Integer exit_status, i, ind, ipminf, it, itask, itol, itrace, m,
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nrmesh;
Nag_Boolean remesh;
double *algopt=0, *atol=0, *rsave=0, *rtol=0,

*u=0, *ue=0, *uout=0, *x=0, *xfix=0, *xi=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

INIT_FAIL(fail);
exit_status = 0;

/* Allocate memory */

if ( !(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(npts, double)) ||
!(ue = NAG_ALLOC(npde*intpts, double)) ||
!(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xfix = NAG_ALLOC(1, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)) )

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

Vprintf("\n\nExample 2\n\n");

itrace = 0;
itol = 1;
atol[0] = 5e-4;
rtol[0] = 0.05;

Vprintf(" npts = %4ld", npts);
Vprintf(" atol = %10.3e", atol[0]);
Vprintf(" rtol = %10.3e\n\n", rtol[0]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
xfix[0] = 0.0;

/* Set remesh parameters */

remesh = Nag_TRUE;
nrmesh = 5;
dxmesh = 0.0;
trmesh = 0.0;
con = 1.0/(npts-1.0);
xratio = 1.5;
ipminf = 0;

xi[0] = 0.0;
ind = 0;
itask = 1;

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* Theta integration */

algopt[0] = 2.0;
algopt[5] = 2.0;
algopt[6] = 2.0;

/* Max. time step */
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algopt[12] = 0.0025;

ts = 0.0;
tout = 0.0;
for (it = 0; it < 2; ++it)

{
tout = 0.2*(it+1);

/* nag_pde_parab_1d_cd_ode_remesh (d03psc), see above. */
nag_pde_parab_1d_cd_ode_remesh(npde, &ts, tout, pdef2, nmflx2, bndry2,

uvin2, u, npts, x, ncode, d03pek, nxi, xi,
neqn, rtol, atol, itol, Nag_OneNorm,
Nag_LinAlgBand, algopt, remesh, nxfix,
xfix, nrmesh, dxmesh, trmesh, ipminf,
xratio, con, monit2, rsave, lrsave, isave,
lisave, itask, itrace, 0, &ind, &comm,
&saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_cd_ode_remesh (d03psc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf(" t = %6.3f\n", ts);
Vprintf(" x Approx u Exact u\n\n");

/* Interpolate at output points */

m = 0;
/* nag_pde_interp_1d_fd (d03pzc), see above. */
nag_pde_interp_1d_fd(npde, m, u, npts, x, xout, intpts, itype, uout,

&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_interp_1d_fd (d03pzc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Check against exact solution */

exact(tout, ue, xout, npde, intpts);
for (i = 1; i <= intpts; ++i)

{
Vprintf(" %9.4f", xout[i-1]);
Vprintf(" %9.4f", UOUT(1,i,1));
Vprintf(" %9.4f\n", UE(1,i));

}
}

Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:

if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);
if (uout) NAG_FREE(uout);
if (x) NAG_FREE(x);
if (xfix) NAG_FREE(xfix);
if (xi) NAG_FREE(xi);
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if (isave) NAG_FREE(isave);

return exit_status;
}
static void uvin2(Integer npde, Integer npts, Integer nxi, const double x[],

const double xi[], double u[],Integer ncode,
double v[], Nag_Comm *comm)

{
double t;

t = 0.0;
exact(t, u, x, npde, npts);

return;
}
static void pdef2(Integer npde, double t, double x, const double u[],

const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double c[],
double d[], double s[], Integer *ires,
Nag_Comm *comm)

{
P(1, 1) = 1.0;
c[0] = 0.0;
d[0] = 0.0;
s[0] = -100.0*u[0]*(u[0]-1.0)*(u[0]-0.5);

return;
}
static void bndry2(Integer npde, Integer npts, double t, const double x[],

const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[],
Integer *ires, Nag_Comm *comm)

{
/* Solution known to be constant at both boundaries */

double ue[1];

if (ibnd == 0)
{

exact(t, ue, &x[0], npde, 1);
g[0] = UE(1, 1) - U(1, 1);

} else {
exact(t, ue, &x[npts-1], npde, 1);
g[0] = UE(1, 1) - U(1,npts);

}

return;
}
static void nmflx2(Integer npde, double t, double x, Integer ncode,

const double v[], const double uleft[],
const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
flux[0] = uleft[0];

return;
}
static void monit2(double t, Integer npts, Integer npde, const double x[],

const double u[], double fmon[], Nag_Comm *comm)
{

static double xa = 0.0;
static Integer icount = 0;
double h1, ux, uxmax, xl, xleft, xmax, xr, xright;
Integer i;

/* Locate shock */

uxmax = 0.0;
xmax = 0.0;
for (i = 2; i <= npts-1; ++i)

{
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h1 = x[i - 1] - x[i - 2];
ux = fabs((U(1, i) - U(1, i-1))/h1);
if (ux > uxmax)

{
uxmax = ux;
xmax = x[i - 1];

}
}

/* Assign width (on first call only) */

if (icount == 0)
{

icount = 1;
xleft = xmax - x[0];
xright = x[npts-1] - xmax;
if (xleft > xright)

{
xa = xright;

} else {
xa = xleft;

}
}

xl = xmax - xa;
xr = xmax + xa;

/* Assign monitor function */

for (i = 0; i < npts; ++i)
{

if (x[i] > xl && x[i] < xr)
{

fmon[i] = 1.0 + cos(nag_pi*(x[i] - xmax)/xa);
} else {

fmon[i] = 0.0;
}

}
return;

}
static void exact(double t, double *u, const double *x, Integer npde,

Integer npts)
{

/* Exact solution (for comparison and b.c. purposes) */

double del, psi, rm, rn, s;
Integer i;

s = 0.1;
del = 0.01;
rm = -1.0/del;
rn = s/del + 1.0;

for (i = 1; i <= npts; ++i)
{

psi = x[i - 1] - t;
if (psi < s)

{
U(1, i) = 1.0;

} else if (psi > del + s) {
U(1, i) = 0.0;

} else {
U(1, i) = rm*psi + rn;

}
}

return;
}

9.2 Program Data

None.
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9.3 Program Results

nag_pde_parab_1d_cd_ode_remesh (d03psc) Example Program Results

Example 1

npts = 61 atol = 1.000e-04 rtol = 1.000e-04

t = 0.100
x 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx u 0.0000 0.1198 0.9461 0.1182 0.0000 0.0000 0.0000

t = 0.200
x 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx u 0.0000 0.0007 0.1631 0.9015 0.1629 0.0001 0.0000

t = 0.300
x 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx u 0.0000 0.0000 0.0025 0.1924 0.8596 0.1946 0.0002

Number of integration steps in time = 92
Number of function evaluations = 443
Number of Jacobian evaluations = 39
Number of iterations = 231

Example 2

npts = 61 atol = 5.000e-04 rtol = 5.000e-02

t = 0.200
x Approx u Exact u

0.0000 1.0000 1.0000
0.3000 0.9507 1.0000
0.4000 0.0000 0.0000
0.5000 0.0000 0.0000
0.6000 0.0000 0.0000
0.7000 -0.0000 0.0000
1.0000 -0.0000 0.0000

t = 0.400
x Approx u Exact u

0.0000 1.0000 1.0000
0.3000 1.0000 1.0000
0.4000 1.0000 1.0000
0.5000 0.9694 1.0000
0.6000 -0.0000 0.0000
0.7000 -0.0000 0.0000
1.0000 0.0000 0.0000

Number of integration steps in time = 468
Number of function evaluations = 1059
Number of Jacobian evaluations = 1
Number of iterations = 2
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Figure 1
Solution to Example 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

U

× × × × × ×××××××××××××××××××××××
×

×

×

×

×
××××××××××××××××××××××× × × × × ×

Figure 2
Solution to Example 2
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